High Altitude Operations Training Course

Enrollment Prerequisites: A pilot may enroll for High Altitude Operations training, provided the pilot:

1. Holds a private pilot certificate, commercial pilot certificate, ATP certificate, ICAO recognized license.

2. Holds an instrument airplane rating or an ATP certificate with an airplane rating.

3. Holds an airplane multiengine land rating.

Description of Course: The High Altitude Operations Course is scheduled for one day and consist of the following minimum programmed hours:

Classroom training .. 6.0
FTD training... 2.0
Post/Preflight Brief.. 0.5

Course Objectives:

The pilot will acquire the necessary knowledge and skills to demonstrate that he/she meets the requirements of FAR 61.31(g) (1) (2) for the High Altitude endorsement.

1. Classroom Training 6 hours

1) High Altitude Flight Environment.
 a) Airspace
 b) FAR 91.211, requirements for use of oxygen
 c) FAR 91.215, requirement for mode C transponder
 d) FAR 91.121, requirement for altimeter setting of 29.92
 e) FAR 91.135, requirement for IFR in Class A airspace
 f) FAR 91.159, & 179, specify cruising altitudes
 g) FAR 91.180, operations in airspace designated as RVSM

2) High Altitude Weather
 a) The Atmosphere
 i) Troposphere
 ii) Tropopause
 iii) Stratosphere
 b) Winds
 i) Jet Stream
 ii) Polar Front Jet Stream
 iii) Low Pressure System Circulation
 iv) Clear Air Turbulence
 c) Clouds and Thunderstorms
 d) Icing

3) Flight Planning and Navigation
a) Flight Planing *
 i) Time, Fuel and Distance Climb
 ii) Time, Fuel and Distance to Descend
 iii) Normal Cruise Power
 iv) Economy Cruise Power
 v) Holding Time
b) Gradual Descents
c) Weather Charts
 i) Low level significant weather prog
 ii) High level significant weather prog
 iii) Forecast winds and temperatures aloft
 iv) Observed winds aloft
 v) Tropopause data chart
 (1) Wind shear
d) Navigation
 i) Jet Routes
 ii) RNAV Routes
 iii) Navaids
4) Physiological Training
 a) Respiratory System
 b) Hypoxia, Effects, Causes, Symptoms
 i) Hypoxic (Altitude) Hypoxia
 ii) Histotoxic Hypoxia
 iii) Hypemic (Anemic) Hypoxia
 iv) Stagnent Hypoxia
 v) Times of Useful Consciousness
 vi) Prolonged use of Oxygen
 vii) Rapid Decompression
5) High Altitude Systems and Components *
 a) Turbochargers
 i) Manual Waste Gate
 ii) Fixed Waste Gate
 iii) Absolute Variable Controller
 b) Pressurazation Systems
 i. Sea Level Controller
 ii. Cabin Pressure/Dump Switch
 iii. Rate Control Knob
 iv. Cabin Climb Indicator
 v. Cabin Altimeter
 vi. Pressure Differential
 vii. Bleed Air Pull to Dump
 viii. Cabin Altitude Warning
 c) Oxygen Systems
 ix. Masks
 x. Oxygen duration charts

6) High Altitude Aerodynamics
 a) Effects on controls
b) Engine cooling

c) Engine power

d) Angle of attack

e) IAS vs TAS

7) **Emergencies**

a) Loss of Pressurazation
 i) Explosive decompression
 ii) Rapid decompression
 iii) Gradual decompression
 iv) Emergency descent

Completion Standard:
The student will have completed this lesson by achieving a score of 70% or better on each end of lesson test and corrected it to 100%

Flight Training Device FTD Lesson *

Lesson 2 hours *

Objective: Receive training and demonstrate proficiency in normal and emergency flight operations at altitudes above 25,000 feet as required in FAR 61.31 (g) (2).

Events:

Preflight Briefing

Before Starting Engines Checks
 a. Airspeeds for Safe operation
 b. Electrical System Checks
 c. Fuel Quantity & Selectors
 d. Annuciator Lights Check
 e. Landing Gear Handle & Lights

Normal Engine Start

Before Taxi Checks
 a. Aux Fuel Pumps
 b. Charging Instruments Checked
 c. Vacuum System Check
 d. Lights
 e. Flight Instruments

Before Take-off
 a. Engine Runup
 b. Ice Protection
 c. Pressurization set
 d. Trim set
 f. Flaps set

Maneuvers:
1. Normal Take-off
2. Normal Climb to Flight Levels
3. Cruise
4. Normal descent
5. Instrument approach
6. Landing
7. After Landing shut down and securing

Emergency Procedures (reposition FTD to cruise flight in Flight Levels) *
 1. Smoke in Cockpit
 2. Loss of Pressurization & Emergency Descent
 3. Cabin Over Pressure

Completion Standard: The student will demonstrate proficiency in all the procedures and maneuvers required in 61.31(g) (2).

* Note:

These lessons can be combined and completed while taking an initial transition course for a pressurized aircraft